Terraform is a powerful tool for managing infrastructure as code (IaC), but without best practices, projects can become hard to maintain. Below are key best practices related to modularity, reusability, and code structure.
Use Modules to Encapsulate Infrastructure Components
Terraform modules help break down infrastructure into reusable components. This promotes consistency, reduces duplication, and simplifies maintenance.
- Organize resources into logical modules (e.g.,
network
,compute
,database
). - Keep module input and output clean—only expose what is necessary.
- Version control your modules to maintain stability.
- Store reusable modules in a private registry, Git repository, or Terraform Cloud.
terraform/ │── modules/ │ ├── vpc/ │ ├── rds/ │ ├── s3/ │── environments/ │ ├── dev/ │ ├── prod/ │── main.tf │── variables.tf │── outputs.tf │── providers.tf
Use Remote or Public Modules Where Possible
Instead of reinventing the wheel, leverage community-maintained modules from Terraform Registry. Example of using an AWS VPC module:
module "vpc" { source = "terraform-aws-modules/vpc/aws" version = "5.0.0" name = "my-vpc" cidr = "10.0.0.0/16" }
Use of Variables
Avoid hardcoded values. Instead, use variables for configurations such as region, instance types, or networking settings.
- Group related variables in
variables.tf
. - Use descriptive names for clarity.
- Provide default values when applicable.
- Use
terraform.tfvars
or environment variables for sensitive configurations.
variable "region" { description = "AWS region" type = string default = "us-east-1" } variable "instance_type" { description = "EC2 instance type" type = string default = "t3.micro" }
Usage in terraform.tfvars
:
region = "us-west-2" instance_type = "t3.small"
Use Local Modules and Keep main.tf Light
Instead of defining all resources in main.tf
, break down infrastructure into local modules.
- Store modules in a separate
modules/
directory. - Avoid embedding too many
locals
inside a single file—use modules instead. - Keep modules loosely coupled by exposing only necessary variables and outputs.
terraform/
│── modules/
│ ├── ec2/
│ │ ├── main.tf
│ │ ├── variables.tf
│ │ ├── outputs.tf
│── environments/
│ ├── dev/
│ ├── prod/
Example Module (modules/ec2/main.tf
)
resource "aws_instance" "app" { ami = var.ami instance_type = var.instance_type tags = { Name = var.name } } output "instance_id" { value = aws_instance.app.id }
Usage in the main project:
module "ec2" { source = "../modules/ec2" ami = "ami-123456" instance_type = "t3.micro" name = "web-server" }
Keep Names Meaningful and Consistent**
Naming conventions are crucial for clarity and organization.
- Use snake_case or kebab-case consistently.
- Prefix resource names with the environment (e.g.,
prod-db
,dev-vpc
). - Use tags for resource tracking and filtering.
resource "aws_s3_bucket" "app_logs" { bucket = "mycompany-app-logs" } resource "aws_instance" "web_server" { ami = "ami-123456" instance_type = "t3.micro" tags = { Name = "web-server-prod" } }
Version Control & State Management
Keep Terraform State Secure Not In Source Control.
- Use Terraform Cloud/Enterprise or AWS S3 with DynamoDB for state locking.
- Never commit
terraform.tfstate
to Git. - Use backend configuration for remote state management.
Example (backend.tf
for AWS S3 backend):
terraform { backend "s3" { bucket = "my-terraform-state" key = "prod/terraform.tfstate" region = "us-east-1" dynamodb_table = "terraform-lock" } }
Linting, Formatting, and CI/CD Integration
- Run
terraform fmt
to maintain consistent code formatting. - Use
terraform validate
to catch syntax errors. - Implement
terraform plan
andterraform apply
in CI/CD pipelines (e.g., GitHub Actions, GitLab CI, Jenkins).
Example GitHub Actions workflow:
name: Terraform CI on: push: branches: - main jobs: terraform: runs-on: ubuntu-latest steps: - name: Checkout code uses: actions/checkout@v3 - name: Setup Terraform uses: hashicorp/setup-terraform@v2 - name: Terraform Init run: terraform init - name: Terraform Validate run: terraform validate - name: Terraform Plan run: terraform plan -out=tfplan - name: Terraform Apply if: github.ref == 'refs/heads/main' run: terraform apply -auto-approve tfplan
Managing Secrets Securely
Always use a secrets manager.
- Do not store secrets in Terraform code or
terraform.tfvars
. - Use AWS Secrets Manager, HashiCorp Vault, or SSM Parameter Store.
- For sensitive variables, use
terraform input variables
and avoid hardcoding.
Example using AWS SSM:
data "aws_ssm_parameter" "db_password" { name = "/prod/db/password" with_decryption = true } resource "aws_db_instance" "mysql" { allocated_storage = 20 engine = "mysql" instance_class = "db.t3.micro" password = data.aws_ssm_parameter.db_password.value }
Resource vs Module
For most use-cases, you should probably avoid using resource
directly in main.tf.
- Small, one-off resources? Use
resource
directly. - Repeated or complex infrastructure? Use a
module
. - Consistency across teams? Modules ensure best practices.
- Want better maintainability? Modules abstract complexity.